摘要

A mathematical model is proposed of the process of formation of the elastohydrodynamic (EHD) lubricant layer between resilient cylinders that begin to rotate in the lubricating material medium from the resting state. The model assumes division of the whole contact region into three zones: the zone within which dry motion is described by the equations of the elastohydrodynamic theory of lubrication, the transient zone, and the dry contact zone. The method of the numerical solution of this system of equations is presented. The calculations are performed for the lubricating material that was used in the published experimental study of the process of formation of the EHD lubricating layer between the resilient ball and the flat resilient base. It is shown that the calculation results well agree with the experimental data both qualitatively and quantitatively providing that the transient region dimensions are adequately selected. The function of the pressure distribution, the lubricating layer thickness, the lubricating material flow, the rate of approach of the surfaces over the contact region at different moments of time, the time dependencies of the lubricating layer thickness at different points of the contact region, and the coordinates of the boundary points of the dry contact region is also presented.

全文