摘要

Based on the extended spin-flip model (SFM), we investigate theoretically the dynamic characteristics of 1550nm vertical-cavity surface-emitting laser subject to polarization-rotated optical feedback: the short cavity regime. Results show that increasing the feedback strength will result in multiple polarization switching (PS) phenomena, and there will appear rich dynamics under the condition of medium feedback intensity, such as single period, period-doubling, quasi-periodic and chaotic states. At the same time, the increase of injection current will result in the reduction of working area of Y direction polarization mode. As the feedback delay time increases, under the condition of weak optical feedback polarization mode, the hopping phenomenon will take place at a particular frequency; the frequency of mode hopping will increase with the increase of moderate feedback strength, and the laser shows a variety of new dynamic characteristics, such as single period, pulse envelope, quasi-periodic and chaotic states, by taking a beat frequency signal. These dynamic characteristics are very sensitive to the phase change so the beat frequency effect between external cavity modes plays a key role. In addition, the hopping phenomenon between various dynamic states can also be found along with the mode hopping.

全文