摘要

In this paper we introduce an algebraic recursive multilevel incomplete factorization preconditioner, based on a distributed Schur complement formulation, for solving general linear systems. The novelty of the proposed method is to combine factorization techniques of both implicit and explicit types, recursive combinatorial algorithms, multilevel mechanisms and overlapping strategies to maximize sparsity in the inverse factors and consequently reduce the factorization costs. Numerical experiments demonstrate the good potential of the proposed solver to precondition effectively general linear systems, also against other state-of-the-art iterative solvers of both implicit and explicit form.