Measuring Drug-Induced Changes in Metabolite Populations of Live Bacteria: Real Time Analysis by Raman Spectroscopy

作者:Carey Paul R*; Whitmer Grant R; Yoon Michael J; Lombardo Michael N; Pusztai Carey Marianne; Heidari Torkabadi Hossein; Che Tao
来源:Journal of Physical Chemistry B, 2018, 122(24): 6377-6385.
DOI:10.1021/acs.jpcb.8b03279

摘要

Raman difference spectroscopy is shown to provide a wealth of molecular detail on changes within bacterial cells caused by infusion of antibiotics or hydrogen peroxide. Escherichia coli strains paired with chloramphenicol, dihydrofolate reductase propargyl-based inhibitors, meropenem, or hydrogen peroxide provide details of the depletion of protein and nucleic acid populations in real time. Additionally, other reproducible Raman features appear and are attributed to changes in cell metabolite populations. An initial candidate for one of the metabolites involves population increases of citrate, an intermediate within the tricarboxyclic acid cycle. This is supported by the observation that a strain of E. coli without the ability to synthesize citrate, gitA, lacks an intense feature in the Raman difference spectrum that has been ascribed to citrate. The methodology for obtaining the Raman data involves infusing the drug into live cells, then washing, freezing, and finally lyophilizing the cells. The freeze-dried cells are then examined under a Raman microscope. The difference spectra [cells treated with drug] - [cells without treatment] are time-dependent and can yield population kinetics for intracellular species in vivo. There is a strong resemblance between the Raman difference spectra of E. coli cells treated with treated with hydrogen peroxide.

  • 出版日期2018-6-21