摘要

This paper proposes performance improvement schemes for non-coherent multiple-input multiple-output (MIMO) communication systems employing per transmit antenna differential mapping (PADM). PADM is one form of differential space-time coding (DSTC), which generates an independent differentially encoded sequence for each of the multiple transmit antennas by means of space-time coding and mapping. The features of the proposed schemes are as follows: 1) it employs an asymmetric space-time mapping instead of the conventional symmetric space-time mapping in order to lower the required signal to noise power ratio (SNR) for maintaining the bit error rate (BER) performance; 2) it employs an analytically derived branch metric criterion based on channel prediction for per-survivor processing (PSP) in order to track fast time-varying channels. Finally, computer simulation results confirm that the proposed schemes improve the required SNR by around 1 dB and can track at the maximum Doppler frequency normalized by symbol rate of 5%.

  • 出版日期2017-5