摘要

P>During reduction diagenesis, production of dissolved Fe2+ by reduction of ferric oxide starts at the Fe-redox boundary. The associated magnetic property changes may influence palaeomagnetic and environmental magnetic records of marine sediments, however, this has not been evaluated thoroughly. In this study, using a gravity core from the Ontong-Java Plateau, we document in detail rock magnetic changes across the Fe-redox boundary, and investigate their influence on relative palaeointensity estimation and on a magnetic proxy for the proportion of terrigenous/biogenic magnetic minerals. The magnetic mineral assemblage above the Fe-redox boundary is characterized by a component with a mean coercivity of similar to 100 mT in isothermal remanent magnetization (IRM) component analyses and low S-ratios (S(-0.1T)). Low-temperature IRM measurements and Mossbauer spectroscopy indicate that the degree of maghemitization is higher above the Fe-redox boundary. From these observations, we conclude that reduction of maghemite to magnetite occurs at the Fe-redox boundary, and we infer that a maghemite skin on magnetic grains is lost across the boundary. Relative palaeointensity variations obtained by normalizing NRM intensity with SIRM agree well with regional and global palaeointensity stacks, which suggests that relative palaeointensity estimation is not significantly affected by the Fe-redox boundary. Temporal variations of the ratio of anhysteretic remanent magnetization susceptibility and saturation IRM (chi(ARM)/SIRM) coincide with the regional pattern across the Ontong-Java Plateau. It is also possible to estimate variations in the proportion of terrigenous to biogenic components using the chi(ARM)/SIRM ratio across the Fe-redox boundary.

  • 出版日期2011-6