Analysis of exemestane and 17 beta-hydroxyexemestane in human urine by gas chromatography/mass spectrometry: development and validation of a method using MO-TMS derivatives

作者:Cavalcanti Gustavo de A*; Garrido Bruno C; Leal Felipe D; Padilha Monica C; de la Torre Xavier; Pereira Henrique M G; de Aquino Neto Francisco R
来源:Rapid Communications in Mass Spectrometry, 2010, 24(22): 3297-3302.
DOI:10.1002/rcm.4779

摘要

Trimethylsilylation of anabolic agents and their metabolites is frequently achieved by using the derivatization mixture N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA)/NH4I/2-mercaptoethanol. Nevertheless, artifacts were formed when this mixture was employed in the monitoring of exemestane and its main metabolite 17 beta-hydroxyexemestane prior to GC-MS analysis. These artifacts were identified as the N-methyltrifluoracetamide (MTFA) and trimethylsiloxyethylmercapto products of the respective trimethylsilyl (TMS) derivatives. Furthermore, artifact formation was evaluated taking the structure (1,4-diene-3-keto-6-exomethylene) of the compounds into account. Although these artifacts are relevant for investigations regarding the derivatization process and may be of interest in many fields, they are detrimental to cope with the requirements of the World Anti-Doping Agency (WADA) in terms of the limits of detection (LODs) required. To overcome this issue, a method using an alternative derivatization was proposed: formation of methyloxime-TMS derivatives through double derivatization using O-methylhydroxylamine/pyridine and MSTFA/TMS imidazole after enzymatic hydrolysis and liquid-liquid extraction. Samples from an excretion study after administration of exemestane to healthy volunteers were analyzed by the proposed method and detection of both exemestane and its main metabolite was possible. This method showed excellent results for both analytes meeting the LODs required for antiestrogenic agents (50 ng/mL) established by WADA. The method was validated for the main metabolite, it was robust and cost-effective for qualitative and quantitative purposes, with LOD and LOQ of 10 ng/mL and 25 ng/mL, respectively.

  • 出版日期2010-11