摘要

Calculations performed at the density functional level of theory have been used to investigate complexes of uranyl with the expanded porphyrin isoamethyrin and the bis-triazinyl-pyridine (BTP) ligands, the latter of which is well-known to be effective in the separation of trivalent lanthanides and actinides. Analysis has been performed using a range of density-based techniques, including the Quantum Theory of Atoms in Molecules (QTAIM), the Electron Localisation ELF) and the reduced density gradient (RDG). The effects of peripheral alkyl substituents on UO2-isoamethyrin, known to be vital for proper replication of the experimental geometry, are considered. Evidence for comparable amounts of covalent character has been found in the largely ionic U-N bonds of UO2-isoamethyrin and [UO2(BTP)(2)] (2+) and examination of the variation in the electronic characteristics of the uranyl unit upon complexation in both of these cases reveal striking similarities in the nature of the U-N bonding and the effect of this bonding on the U-Oyl interaction, as well as evidence of donation into the U-N bonding region from the uranyl unit itself.

  • 出版日期2016-7-7