摘要

Infectious diarrhea is an important public health problem around the world. Meteorological factors have been strongly linked to the incidence of infectious diarrhea. Therefore, accurately forecast the number of infectious diarrhea under the effect of meteorological factors is critical to control efforts. In recent decades, development of artificial neural network (ANN) models, as predictors for infectious diseases, have created a great change in infectious disease predictions. In this paper, a three layered feed-forward back-propagation ANN (BPNN) model trained by Levenberg-Marquardt algorithm was developed to predict the weekly number of infectious diarrhea by using meteorological factors as input variable. The meteorological factors were chosen based on the strongly relativity with infectious diarrhea. Also, as a comparison study, the support vector regression (SVR), random forests regression (RFR) and multivariate linear regression (MLR) also were applied as prediction models using the same dataset in addition to BPNN model. The 5-fold cross validation technique was used to avoid the problem of overfitting in models training period. Further, since one of the drawbacks of ANN models is the interpretation of the final model in terms of the relative importance of input variables, a sensitivity analysis is performed to determine the parametric influence on the model outputs. The simulation results obtained from the BPNN confirms the feasibility of this model in terms of applicability and shows better agreement with the actual data, compared to those from the SVR, RFR and MLR models. The BPNN model, described in this paper, is an efficient quantitative tool to evaluate and predict the infectious diarrhea using meteorological factors.