摘要

A plenty of studies on the utilization of biomass alcohol fuels have been conducted, but combustion efficiency and stability of this fuels still need to be improved. Based on biomass alcohol fuels (bio-methanol and bio-ethanol), this paper studied auto-adaptive air distribution characteristics and optimum structure parameters of an ejector burner by numerical simulation method. Also, an experiment was conducted to verify the numerical results. The results show that the mole air entrainment ratio (MAER) keeps almost constant when the ejector fuel nozzle exit locates at the segment between the ejector throat and the suction chamber entrance, but a bigger ratio alpha would lead to a higher MAER till the a is bigger than 8.5 for bio-methanol and 11.5 for bio-ethanol. The bio-ethanol fuel is more beneficial for air carrying role because of its big molecular weight. Operation pressure (P-w) has a little impact on MAER of the two fuels, but the rise of back pressure (P-b) would lead to rapid decrease of MAER for the two fuels. For the optimum structure burners, the MAER can be maintained at the value of theoretical complete combustion. Its changing rate is less than 2.3% for bio-methanol and 2.5% for bio-ethanol when the burner load changes from 30% to 120%, which is highly consistent with the experimental results. The optimum burner can distribute air supply automatically with the changing of burner load.

全文