摘要

Pyridoxal 5'-phosphate (PLP) Schiff base, a versatile cofactor, exhibits a tautomeric equilibrium that involves an intramolecular proton transfer between the N-protonated zwitterionic ketoenamine tautomer and the O-protonated covalent enolimine tautomer. It has been postulated that for the catalytic activity, the PLP has to be in the zwitterionic ketoenamine tautomeric form. However, the exact position of the tautomeric equilibrium of Schiff base in the active site of PLP-dependent enzyme is not known yet. In the present work, we investigated the tautomeric equilibrium for the external aldimine state of PLP aspartate (PLP-Asp) Schiff base in the active site of aspartate aminotransferase (AspAT) using combined quantum mechanical and molecular mechanical simulations. The main focus of the present study is to analyze the factors that control the tautomeric equilibrium in the active sites of various PLP-dependent enzymes. The results show that the ketoenamine tautomer is more preferred than the enolimine tautomer both in the gas and aqueous phases as well as in the active site of AspAT. Current simulations show that the active site of AspAT is more suitable for the ketoenamine tautomer compared to the enolimine tautomer. Interestingly, the Tyr225 acts as a proton donor to the phenolic oxygen in the ketoenamine tautomer, while in the covalent enolimine tautomer, it acts as a proton acceptor to the phenolic oxygen. Finally, the metadynamics study confirms this result. The calculated free energy barrier is about 7.5 kcal/mol. A comparative analysis of the microenvironment created by the active site residues of three different PLP-dependent enzymes (aspartate aminotransferase, Dopa decarboxylase, and Ala-racemase) has been carried out to understand the controlling factor(s) of the tautomeric equilibrium. The analysis shows that the intermolecular hydrogen bonding between active site residues and the phenolic oxygen of PLP shifts the tautomeric equilibrium toward the N-protonated ketoenamine tautomeric form.

  • 出版日期2014-9-25