摘要

A jet of granular material impinging on an inclined plane produces a diverse range of flows, from steady hydraulic jumps to periodic avalanches, self-channelised flows and pile collapse behaviour. We describe the various flow regimes and study in detail a steady-state flow, in which the jet generates a closed teardrop-shaped hydraulic jump on the plane, enclosing a region of fast-moving radial flow. On shallower slopes, a second steady regime exists in which the shock is not teardrop-shaped, but exhibits a more complex 'blunted' shape with a steadily breaking wave. We explain these regimes by consideration of the supercritical or subcritical nature of the flow surrounding the shock. A model is developed in which the impact of the jet on the inclined plane is treated as an inviscid flow, which is then coupled to a depth-integrated model for the resulting thin granular avalanche on the inclined plane. Numerical simulations produce a flow regime diagram strikingly similar to that obtained in experiments, with the model correctly reproducing the regimes and their dependence on the jet velocity and slope angle. The size and shape of the steady experimental shocks and the location of sub-and supercritical flow regions are also both accurately predicted. We find that the physics underlying the rapid flow inside the shock is dominated by depth-averaged mass and momentum transport, with granular friction, pressure gradients and three-dimensional aspects of the flow having comparatively little effect. Further downstream, the flow is governed by a friction-gravity balance, and some flow features, such as a persistent indentation in the free surface, are not reproduced in the numerical solutions. On planes inclined at a shallow angle, the effect of stationary granular material becomes important in the flow evolution, and oscillatory and more general time-dependent flows are observed. The hysteretic transition between static and dynamic friction leads to two phenomena observed in the flows: unsteady avalanching behaviour, and the feedback from static grains on the flowing region, leading to leveed, self-channelised flows.

  • 出版日期2011-5