摘要

The functionalization of nanoparticles has primarily been used as a means to impart stability in nanoparticle suspensions. In most cases even the most advanced nanomaterials lose their function should suspensions aggregate and settle, but with the capping agents designed for specific solution chemistries, functionalized nanomaterials generally remain monodisperse in order to maintain their function. The importance of this cannot be underestimated in light of the growing use of functionalized nanomaterials for wide range of applications. Advanced functionalization schemes seek to exert fine control over suspension stability with small adjustments to a single, controllable variable. This review is specific to functionalized nanoparticles and highlights the synthesis and attachment of novel functionalization schemes whose design is meant to affect controllable aggregation. Some examples of these materials include stimulus responsive polymers for functionalization which rely on a bulk solution physicochemical threshold (temperature or pH) to transition from a stable (monodisperse) to aggregated state. Also discussed herein are the primary methods for measuring the kinetics of particle aggregation and theoretical descriptions of conventional and novel models which have demonstrated the most promise for the appropriate reduction of experimental data. Also highlighted are the additional factors that control nanoparticle stability such as the core composition, surface chemistry and solution condition. For completeness, a case study of gold nanoparticles functionalized using homologous block copolymers is discussed to demonstrate fine control over the aggregation state of this type of material.

  • 出版日期2015-8