摘要

Formation of nonextractable residue was widely observed as a sink of atrazine (ATZ) in soil. However, the mechanisms by which ATZ binds to soil organic matter remain unclear. In this study, we demonstrated that neucleophilic substitution could serve an important pathway causing ATZ sequestration. The carbon bonded to the chlorine in ATZ molecule is partially positively charged due to the strong electronegativity of chlorine and is susceptible to the attack of nucleophiles such as aniline. Since aromatic amines are relatively rare in natural soils, amino acids/peptides were hypothesized to act as the main nucleophiles in real environment. However, substantially ATZ transformation was only observed in the presence of those species containing thiol functionality. Thus, we speculated that it was the thiol group in amino acids/peptides acting as the nucleophile. Nitrogen in amino acids was in fact not an active nucleophile toward ATZ. In addition to the sulfur-containing amino acids, other thiol compounds, and sulfide were also proved to be reactive to ATZ. Thus, the sequestration potential of ATZ probably correlates to the availability of thiol compounds in soil.

  • 出版日期2015-3-2
  • 单位南京农业大学; 环境保护部南京环境科学研究所