摘要

In this paper, we introduce an efficient numerical method based on surface integral equations to characterize the scattering of a zero-order Bessel beam by arbitrarily shaped homogeneous dielectric particles. The incident beam is described by vector expressions in terms of the electric and magnetic fields that perfectly satisfy Maxwell's equations. The scattering problems involving homogeneous dielectric particles with arbitrary shapes are formulated with the electric and magnetic current combined-field integral equation and modeled by using surface triangular patches. Solutions are performed iteratively by using the multilevel fast multipole algorithm. Some numerical results are included to illustrate the validity and capability of the proposed method. These results are also expected to provide useful insights into the scattering of a Bessel beam by complex-shaped particles.