摘要

We present an efficient null space free Jacobi-Davidson method to compute the positive eigenvalues of time harmonic Maxwell's equations. We focus on a class of spatial discretizations that guarantee the existence of discrete vector potentials, such as Yee's scheme and the edge elements. During the Jacobi-Davidson iteration, the correction process is applied to the vector potential instead. The correction equation is solved approximately as in the standard Jacobi-Davidson approach. The computational cost of the transformation from the vector potential to the corrector is negligible. As a consequence, the expanding subspace automatically stays out of the null space and no extra projection step is needed. Numerical evidence confirms that the proposed scheme indeed outperforms the standard and projection-based Jacobi-Davidson methods by a significant margin.