Murine Olfactory Bulb Interneurons Survive Infection with a Neurotropic Coronavirus

作者:Wheeler D Lori; Athmer Jeremiah; Meyerholz David K; Perlman Stanley*
来源:Journal of Virology, 2017, 91(22): UNSP e01099-17.
DOI:10.1128/JVI.01099-17

摘要

Viral infection of the central nervous system (CNS) is complicated by the mostly irreplaceable nature of neurons, as the loss of neurons has the potential to result in permanent damage to brain function. However, whether neurons or other cells in the CNS sometimes survive infection and the effects of infection on neuronal function is largely unknown. To address this question, we used the rJHM strain (rJ) of mouse hepatitis virus (MHV), a neurotropic coronavirus that causes acute encephalitis in susceptible strains of mice. To determine whether neurons or other CNS cells survive acute infection with this virulent virus, we developed a recombinant JHMV that expresses Cre recombinase (rJ-Cre) and infected mice that universally expressed a silent (floxed) version of tdTomato. Infection of these mice with rJ-Cre resulted in expression of tdTomato in host cells. The results showed that some cells were able to survive the infection, as demonstrated by continued tdTomato expression after virus antigen could no longer be detected. Most notably, interneurons in the olfactory bulb, which are known to be inhibitory, represented a large fraction of the surviving cells. In conclusion, our results indicated that some neurons are resistant to virus-mediated cell death and provide a framework for studying the effects of prior coronavirus infection on neuron function. IMPORTANCE We developed a novel recombinant virus that allows the study of cells that survive an infection by a central nervous system-specific strain of murine coronavirus. Using this virus, we identified neurons and, to a lesser extent, nonneuronal cells in the brain that were infected during the acute phase of the infection and survived for approximately 2 weeks until the mice succumbed to the infection. We focused on neurons and glial cells within the olfactory bulb because the virus enters the brain at this site. Our results show that interneurons of the olfactory bulb were the primary cell type able to survive infection. Further, these results indicate that this system will be useful for functional and gene expression studies of cells in the brain that survive acute infection.

  • 出版日期2017-11