摘要

Comparative phylogeography seeks for commonalities in the spatial demographic history of sympatric organisms to characterize the mechanisms that shaped such patterns. The unveiling of incongruent phylogeographic patterns in co-occurring species, on the other hand, may hint to overlooked differences in their life histories or microhabitat preferences. The woodlouse-hunter spiders of the genus Dysdera have undergone a major diversification on the Canary Islands. The species pair Dysdera alegranzaensis and Dysdera nesiotes are endemic to the island of Lanzarote and nearby islets, where they co-occur at most of their known localities. The two species stand in sharp contrast to other sympatric endemic Dysdera in showing no evidence of somatic (non-genitalic) differentiation. Phylogenetic and population genetic analyses of mitochondrial cox1 sequences from an exhaustive sample of D. alegranzaensis and D. nesiotes specimens, and additional mitochondrial (16S, L1, nad1) and nuclear genes (28S, H3) were analysed to reveal their phylogeographic patterns and clarify their phylogenetic relationships. Relaxed molecular clock models using five calibration points were further used to estimate divergence times between species and populations. Striking differences in phylogeography and population structure between the two species were observed. Dysdera nesiotes displayed a metapopulation-like structure, while D. alegranzaensis was characterized by a weaker geographical structure but greater genetic divergences among its main haplotype lineages, suggesting more complex population dynamics. Our study confirms that co-distributed sibling species may exhibit contrasting phylogeographic patterns in the absence of somatic differentiation. Further ecological studies, however, will be necessary to clarify whether the contrasting phylogeographies may hint at an overlooked niche partitioning between the two species. In addition, further comparisons with available phylogeographic data of other eastern Canarian Dysdera endemics confirm the key role of lava flows in structuring local populations in oceanic islands and identify localities that acted as refugia during volcanic eruptions.

  • 出版日期2013-2

全文