摘要

An efficient scheme is proposed for generating n-qubit Greenberger-Horne-Zeilinger states of n superconducting qubits separated by (n - 1) coplanar waveguide resonators capacitively via adiabatic passage with the help of quantum Zeno dynamics in one step. In the scheme, it is not necessary to precisely control the time of the whole operation and the Rabi frequencies of classical fields because of the introduction of adiabatic passage. The numerical simulations for three-qubit Greenberger-Horne-Zeilinger state show that the scheme is insensitive to the dissipation of the resonators and the energy relaxation of the superconducting qubits. The three-qubit Greenberger-Horne-Zeilinger state can be deterministically generated with comparatively high fidelity in the current experimental conditions, though the scheme is somewhat sensitive to the dephasing of superconducting qubits.