Adaptive optics photoacoustic spectroscopic imaging

作者:Jian Xiaohua; Cui Yaoyao*; Xiang Yongjia; Han Zhile; Gu Tianming; Lv Tiejun
来源:Optics Communications, 2013, 286(1): 383-386.
DOI:10.1016/j.optcom.2012.08.052

摘要

For decreasing wavefront error and obtaining higher resolution image of biological tissues, an adaptive optics photoacoustic spectroscopic imaging (AOPSI) system is proposed in this paper. In this system, an adaptive optics (AO) sub-system consisting of a Shack-Hartmann wavefront sensor (SHWS) and a liquid crystal on silicon (LCOS) is designed to correct the wavefront aberration of the illuminating light for getting high resolution image. The photoacoustic (PA) signals of AOPSI generated by irradiating the sample with a tunable optical parametric oscillator (OPO) lasers emitting light at 680-950 nm are received by a broadband ultrasound transducer. The received data are rearranged according to the wavelength sequences and decoded for image reconstruction. Moreover, the PA spectroscopy is used to obtain different wavelength PA images, with which one can accurately distinguish organization structures and identify organizational components, etc. The final simulation results demonstrated that when the wavefront errors were corrected by the AO system, the AOPSI images showed significant quality improvement which will be helpful to enhance the ability and application of PA imaging.