A new role of Klumpfuss in establishing cell fate during the GMC asymmetric cell division

作者:Gabilondo Hugo; Losada Perez Maria; Monedero Ignacio; Torres Herraez Arturo; Molina Isabel; Torroja Laura; Benito Sipos Jonathan*
来源:Cell and Tissue Research, 2014, 358(2): 621-626.
DOI:10.1007/s00441-014-1965-y

摘要

Studies in the Drosophila embryonic NB4-2 lineage have suggested that the transcription factor Klumpfuss (Klu) functions within embryonic neuroblast lineages to differentiate between the identities of two adjacent ganglion mother cells (GMCs). However, because of the limited lineage markers available, these observations have been made only for the NB4-2 lineage. Recent findings have placed this transcription factor in the vanguard of Drosophila neural stem cell biology by demonstrating that Klu is necessary for larval neuroblast growth and self-renewal. Here, we have studied the role of klu in an incipient model in order to address basic mechanisms of neural specification: the Va system. None of the previously reported roles of Klu satisfactorily explain our observations. Unexpectedly, in this lineage, klu is necessary for differentiating between the fates of the two neurons born from a unique GMC; klu mutants produce two B-type cells, rather than one B-type (Notch-OFF) and one A-type (Notch-ON) cell. Additionally, our results demonstrate that Klu operates in the GMC and/or in the newly born neuron, but not in the neuroblast. Unlike in larval neuroblasts in which Klu is an executor of Notch signaling, we have found that Klu does not lie downstream of the Notch pathway in this cell division context.

  • 出版日期2014-11