摘要

Seismogenic fault geometry, especially for a blind fault, is usually difficult to derive, based only on the distribution of aftershocks and interference fringes of Interferometric Synthetic Aperture Radar (InSAR). To better constrain the fault geometry of the 2017 Jiuzhaigou Mw 6.5 earthquake, we first carried out a nonlinear inversion for a single fault source using multi-peak particle swarm optimization (MPSO), Monte Carlo (MC), and Markov Chain Monte Carlo (MCMC) algorithms, respectively, with constraints of InSAR data in multiple SAR viewing geometries. The fault geometry models retrieved with different methods were highly consistent and mutually verifiable, showing that a blind faulting with a strike of similar to 154 degrees and a dip angle of similar to 77 degrees was responsible for the Jiuzhaigou earthquake. Based on the optimal fault geometry model, the fault slip distribution jointly inverted from the InSAR and Global Positioning System (GPS) data by the steepest descent method (SDM) and the MC method showed that the slip was mainly concentrated at the depth of 1-15 km, and only one slip center appeared at the depth of 5-9 km with a maximum slip of about 1.06 m, some different from previous studies. Taking the shear modulus of mu = 32 GPa, the seismic moment derived from the distributed slip model was about 7.85 x 10(18) Nm, equivalent to Mw 6.54, which was slightly larger than that from the focal mechanism solutions. The fault spatial geometry and slip distribution could be further validated with the spatial patterns of the immediate aftershocks. Most of the off-fault aftershocks with the magnitude > M2 within one year after the mainshock occurred in the stress positive stress change area, which coincided with the stress triggering theory. The static Coulomb stress, triggered by the mainshock, significantly increased at the Tazang fault (northwest to the epicenter), and at the hidden North Huya fault, and partial segments of the Minjiang fault (west of the epicenter).