摘要

Cell seeding technology is commonly used in the field of tissue engineering to enhance the performance of bioscaffolds and promote tissue regeneration. The age of cells used for ex vivo seeding to achieve maximal tissue regeneration has not been defined. Since rapid angiogenesis is the most critical step for tissue graft survival and success, we evaluated passage-dependent vascular endothelial growth factor (VEGF) expression in cultured smooth muscle cells (SMCs) obtained from urinary bladder and endothelial cell response to bladder SMCs. Levels of various VEGF isoforms mRNA expression and total VEGF secretion were determined by a semi-quantitative reverse-transcription polymerase chain reaction (RT-PCR) and an enzyme-linked immunosorbent assay (ELISA) analysis, respectively. In vitro endothelial cell migration in Transwell (R) and capillary-like tube formation in Matrigel (TM) were used to predict the ability of bladder SMCs to promote angiogenesis. VEGF produced by cultured bladder SMCs increased from passages 4 to 7, and decreased from passages 7 to 12 at both mRNA and protein levels. Endothelial cell migration as well as capillary-like tube formation correlated with levels of VEGF expression by bladder SMCs. Pre-incubation of endothelial cells with a VEGF receptor 1/2 inhibitor, SU5416, significantly reduced the number of capillary-like tubes in SMC-endothelial cell Matrigel (TM) co-culture, and confirmed the involvement of VEGF in endothelial cell tube formation. Our results demonstrate that cell passage number is related to levels of VEGF production, which may translate to angiogenesis in engineered tissues.

  • 出版日期2009-12