摘要

The stability and rheological response of coagulated silica sols formed from fumed silica suspensions were investigated in aqueous KOH solution at pH II upon the addition of hexadecyltrimethylammonium chloride (C(16)TAC) as functions of silica and surfactant concentration. The coagulated silica sols with negative charges are stable at given concentration ranges of silica and C(16)TAC, and the C(16)TAC molecules are completely adsorbed on the silica surface in these ranges. The average hydrodynamic diameters of the coagulated silica colloidal sols at C(16)TAC concentrations from 1.0 x 10(-4) to 5.0 x 10(-4) M are almost twice the diameter observed in the absence of C(16)TAC, independent of silica concentration. At C(16)TAC concentrations below 4.0 x 10(-4) M, the resulting coagulated colloidal sols showed Newtonian responses under hysteresis loop measurements, whereas at above 5.0 x 10(-4) M, the flow curve changes from a positive hysteresis loop to a crossover hysteresis loop with increasing concentration. This change under shear flow is due to a partial breakdown of the coagulated structure of the fumed silica suspensions as a result of electrical neutralization. Finally, the coagulated colloidal sols which gave a crossover hysteresis loop present a shear-thinning behavior and their transit shear stresses exhibit overshoots whatever the shear rate used. Plots of the resulting steady-state viscosities against shear rate indicate shear-thinning behavior.

  • 出版日期2010-6-15