摘要

Ni54Mn25Ga20.9Gd0.1 Polycrystalline high-temperature shape memory alloy displayed high compressive fracture strain of 24.6% and large shape memory effect of 7.5%. However, its deformation mechanism was still unknown. In this paper, the structure revolution characterized by XRD and TEM indicated a new deformation mechanism different before was found. The deformation process of Ni54Mn25Ga20.9Gd0.1 alloy could be divided into four stages, including elastic deformation of non-modulated tetragonal martensite (T), stress-induced T to seven-layered modulated martensite (7 M) transformation, variants reorientation of 7 M, and elastic plastic deformation of reoriented 7 M. The 7 M formed by compression deformation disappeared completely after heating to the temperature above A(f).