6,7-Dimethoxy-3-(3-methoxyphenyl)isoquinolin-1-amine induces mitotic arrest and apoptotic cell death through the activation of spindle assembly checkpoint in human cervical cancer cells

作者:Chung Kyung Sook; Choi Hye Eun; Shin Ji Sun; Cho Young Wuk; Choi Jung Hye; Cho Won Jea; Lee Kyung Tae*
来源:Carcinogenesis, 2013, 34(8): 1852-1860.
DOI:10.1093/carcin/bgt133

摘要

Previously, we reported that 6,7-dimethoxy-3-(3-methoxyphenyl)isoquinolin-1-amine (CWJ-082) has potent cytotoxic effects on various cancer cells, but the underlying molecular mechanism responsible was not determined. In the present study, CWJ-082 caused cervical cancer cell cycle arrest at the G(2)/M phase and subsequent caspase-dependent apoptosis. The mitotic arrest caused by CWJ-082 found to be due to increases in the activation of cyclin-dependent kinase 1/cyclin B1 complex and the phosphorylation of histone H3. In addition, CWJ-082 induced the phosphorylation of BubR1 and the association between mitotic arrest deficient 2 (Mad2) and cell division cycle protein 20. These findings suggested that CWJ-082 activated the mitotic spindle checkpoint. Furthermore, knockdown of the spindle checkpoint proteins BubR1 or Mad2 using specific small interfering RNAs significantly reduced CWJ-082-induced mitotic cell accumulation and apoptosis. In addition, CWJ-082 induced the appearance of spindle abnormalities by inducing -tubulin polymerization. In BALB/c(nu/nu) mice bearing a HeLa xenograft, CWJ-082 significantly inhibited tumor growth. Taken together, these results suggest that CWJ-082 inhibits cell growth via mitotic arrest by activating the mitotic spindle checkpoint and by inducing -tubulin polymerization and that these events ultimately lead to the apoptosis of human cervical cancer cells and inhibit tumor growth in HeLa xenograft mice.

  • 出版日期2013-8