摘要

An experimental investigation of nucleate pool boiling heat transfer is carried out using SiO2 nanofluid in atmospheric pressure and saturated conditions. The results show that the nucleate boiling heat transfer coefficient (HTC) of the nanofluids is lower than that of deionized water, especially in high heat fluxes. In addition, the experimental results indicate that the critical heat flux (CHF) improves up to 45% with the increase of the nanoparticle volume concentration. Atomic force microscopy images from the boiling surface reveal that the nanoparticles are deposited on the heating surface during the nanofluid pool boiling experiments. It is found that the boiling HTC deteriorates as a result of the reduction in active nucleation sites and the formation of extra thermal resistance due to blocked vapor in the porous structures near the heating surface. Furthermore, the improvement of the surface wettability causes an increase in CHF. Based on the experimental investigations, it can be concluded that the changes in the properties of the boiling surface are mainly responsible for the variations in nanofluids boiling performance.

  • 出版日期2017