摘要

The Silicon Drift Detectors (SDDs) have replaced simple diodes in demanding X-ray fluorescence applications like in element analysers capable of detecting light elements. The reason for this is that with similar collection area the SDDs have a much smaller output capacitance than diodes due to a much smaller anode size. Thus the SDDs provide much better Signal to Noise Ratio (SNR) at smaller signal levels than diodes. The small capacitance in SDDs is achieved by placing concentric rings around a miniature sized anode. These rings are biased such that inside the SDD's fully depleted bulk a radial electric field component is established guiding signal charges towards the anode. Problems complicating the design of SDDs are positive oxide charge and interface dark noise. The latter is caused when leakage current generated at depleted interfaces mixes with the signal charge. It has been shown previously that by utilizing a chain of resistors connected to SDD's p+ drift rings and intermediate n+ rings both of these problems can be solved but the resistor chain arrangement requires an additional process step, which may not be standardly available. The interface generated dark noise and the requirement for a resistor chain can be removed by implementing suitable gaps in the p+ rings or with a resistive spiral as well as by implementing an additional anode for the collection of interface leakage current. Such SDDs are, however, vulnerable to accumulation of positive oxide charge complicating the manufacturing and likely reducing the effective lifetime of the detector. We present an SDD design comprising a novel ring arrangement preventing the formation of interface dark noise, being resistant to positive oxide charge, and removing the need for a resistor chain. In this work the design and operation principle of the proposed SDD is presented. The operation of the proposed SDD has been evaluated on TCAD with cylindrically symmetric 3D process and device simulations.

  • 出版日期2015-2