Stability, Bioavailability, and Bacterial Toxicity of ZnO and Iron-Doped ZnO Nanoparticles in Aquatic Media

作者:Li Minghua; Pokhrel Suman; Jin Xue; Maedler Lutz; Damoiseaux Robert; Hoek Eric M V*
来源:Environmental Science & Technology, 2011, 45(2): 755-761.
DOI:10.1021/es102266g

摘要

The stability and bioavailability of nanoparticles is governed by the interfacial properties that nanoparticles acquire when immersed in a particular aquatic media as well as the type of organism or cell under consideration. Herein, high-throughput screening (HTS) was used to elucidate ZnO nanoparticle stability, bioavailability, and antibacterial mechanisms as a function of iron doping level (in the ZnO nanoparticles), aquatic chemistry, and bacterial cell type. zeta-Potential and aggregation state of dispersed ZnO nanoparticles was strongly influenced by iron doping in addition to electrolyte composition and dissolved organic matter; however, bacterial inactivation by ZnO nanoparticles was most significantly influenced by Zn2+ ions dissolution, cell type, and organic matter. Nanoparticle IC50 determined for Bacillus subtilis and Escherichia coli were on the order of 03-0.5 and 15-43 mg/L (as Zn2+, while the IC50 for Zn2+ tolerant Pseudomonas putida was always > 500 mg/L Tannic acid decreased toxicity of ZnO nanoparticles more than humic, fulvic, and alginic acid, because it complexed the most tree Zn2+ ions, thereby reducing their bioavailability. These results underscore the complexities and challenges regulators face in assessing potential environmental impacts of nanotechnology; however, the high-throughput and combinatorial methods employed promise to rapidly expand the knowledge base needed to develop an appropriate risk assessment framework.

  • 出版日期2011-1-15