Understanding Variation in Transcription Factor Binding by Modeling Transcription Factor Genome-Epigenome Interactions

作者:Chen Chieh Chun*; Xiao Shu; Xie Dan; Cao Xiaoyi; Song Chun Xiao; Wang Ting; He Chuan; Zhong Sheng
来源:PLoS Computational Biology, 2013, 9(12): e1003367.
DOI:10.1371/journal.pcbi.1003367

摘要

Despite explosive growth in genomic datasets, the methods for studying epigenomic mechanisms of gene regulation remain primitive. Here we present a model-based approach to systematically analyze the epigenomic functions in modulating transcription factor-DNA binding. Based on the first principles of statistical mechanics, this model considers the interactions between epigenomic modifications and a cis-regulatory module, which contains multiple binding sites arranged in any configurations. We compiled a comprehensive epigenomic dataset in mouse embryonic stem (mES) cells, including DNA methylation (MeDIP-seq and MRE-seq), DNA hydroxymethylation (5-hmC-seq), and histone modifications (ChIP-seq). We discovered correlations of transcription factors (TFs) for specific combinations of epigenomic modifications, which we term epigenomic motifs. Epigenomic motifs explained why some TFs appeared to have different DNA binding motifs derived from in vivo (ChIP-seq) and in vitro experiments. Theoretical analyses suggested that the epigenome can modulate transcriptional noise and boost the cooperativity of weak TF binding sites. ChIP-seq data suggested that epigenomic boost of binding affinities in weak TF binding sites can function in mES cells. We showed in theory that the epigenome should suppress the TF binding differences on SNP-containing binding sites in two people. Using personal data, we identified strong associations between H3K4me2/H3K9ac and the degree of personal differences in NFB binding in SNP-containing binding sites, which may explain why some SNPs introduce much smaller personal variations on TF binding than other SNPs. In summary, this model presents a powerful approach to analyze the functions of epigenomic modifications. This model was implemented into an open source program APEG (Affinity Prediction by Epigenome and Genome, http://systemsbio.ucsd.edu/apeg).
Author Summary We developed a model-based approach to systematically analyze the epigenomic functions in modulating transcription factor-DNA binding. We postulated the existence of TF-specific epigenomic motifs, which could explain why some TFs appeared to have different DNA binding motifs derived from in vivo and in vitro experiments. The theoretical results suggested that the epigenome can modulate transcriptional noise and boost the cooperativity of weak TF binding sites. A preliminary analysis of the existing data suggested that epigenomic boost of binding affinities in weak TF binding sites could be a widespread regulatory mechanism in mES cells. Moreover, using personal data, we identified strong associations between H3K4me2/H3K9ac and the degree of individual differences in NFB binding in SNP-containing binding sites, suggesting the theoretical mechanism for epigenome to attenuate the TF binding differences on SNP-containing binding sites in two individuals may contribute to link genomic variation to phenotypic variation. Thus, this model presents a powerful approach to analyze the functions of epigenomic modifications.

  • 出版日期2013-12

全文