Postoperative Displacement of Deep Brain Stimulation Electrodes Related to Lead-Anchoring Technique

作者:Contarino M Fiorella*; Bot Maarten; Speelman Johannes D; de Bie Rob M A; Tijssen Marina A; Denys Damiaan; Bour Lo J; Schuurman P Richard; van den Munckhof Pepijn
来源:Neurosurgery, 2013, 73(4): 681-688.
DOI:10.1227/NEU.0000000000000079

摘要

BACKGROUND: Displacement of deep brain stimulation (DBS) electrodes may occur after surgery, especially due to large subdural air collections, but other factors might contribute. %26lt;br%26gt;OBJECTIVE: To investigate factors potentially contributing to postoperative electrode displacement, in particular, different lead-anchoring techniques. %26lt;br%26gt;METHODS: We retrospectively analyzed 55 patients (106 electrodes) with Parkinson disease, dystonia, tremor, and obsessive-compulsive disorder in whom early postoperative and long-term follow-up computed tomography (CT) was performed. Electrodes were anchored with a titanium microplate or with a commercially available plastic cap system. Two independent examiners determined the stereotactic coordinates of the deepest DBS contact on early postoperative and long-term follow-up CT. The influence of age, surgery duration, subdural air volume, use of microrecordings, fixation method, follow-up time, and side operated on first was assessed. %26lt;br%26gt;RESULTS: Subdural air collections measured on average 4.3 +/- 6.2 cm(3). Three-dimensional (3-D) electrode displacement and displacement in the X, Y, and Z axes significantly correlated only with the anchoring method, with larger displacement for microplate-anchored electrodes. The average 3-D displacement for microplate-anchored electrodes was 2.3 +/- 2.0 mm vs 1.5 +/- 0.6 mm for electrodes anchored with the plastic cap (P = .030). Fifty percent of the microplate-anchored electrodes showed 2-mm or greater (potentially relevant) 3-D displacement vs only 25% of the plastic cap-anchored electrodes (P %26lt; .01). %26lt;br%26gt;CONCLUSION: The commercially available plastic cap system is more efficient in preventing postoperative DBS electrode displacement than titanium microplates. A reliability analysis of the electrode fixation is warranted when alternative anchoring methods are used.

  • 出版日期2013-10