The Cik1/Kar3 Motor Complex Is Required for the Proper Kinetochore-Microtubule Interaction After Stressful DNA Replication

作者:Liu Hong; Jin Fengzhi; Liang Fengshan; Tian Xuemei; Wang Yanchang*
来源:Genetics, 2011, 187(2): 397-U58.
DOI:10.1534/genetics.110.125468

摘要

In budding yeast Saccharomyces cerevisiae, kinetochores are attached by microtubules during most of the cell cycle, but the duplication of centromeric DNA disassembles kinetochores, which results in a brief dissociation of chromosomes from microtubules. Kinetochore assembly is delayed in the presence of hydroxyurea, a DNA synthesis inhibitor, presumably due to the longer time required for centromeric DNA duplication. Some kinetochore mutants are sensitive to stressful DNA replication as these kinetochore proteins become essential for the establishment of the kinetochore-microtubule interaction after treatment with hydroxyurea. To identify more genes required for the efficient kinetochore-microtubule interaction under stressful DNA replication conditions, we carried out a genome-wide screen for yeast mutants sensitive to hydroxyurea. From this screen, cik1 and kar3 mutants were isolated. Kar3 is the minus-end-directed motor protein; Cik1 binds to Kar3 and is required for its motor function. After exposure to hydroxyurea, cik1 and kar3 mutant cells exhibit normal DNA synthesis kinetics, but they display a significant anaphase entry delay. Our results indicate that cik1 cells exhibit a defect in the establishment of chromosome bipolar attachment in the presence of hydroxyurea. Since Kar3 has been shown to drive the poleward chromosome movement along microtubules, our data support the possibility that this chromosome movement promotes chromosome bipolar attachment after stressful DNA replication.

  • 出版日期2011-2