Dual-sorption model for H-2/CO2 permeation in glassy polymeric Matrimid membrane

作者:Cristina David Oana; Gorri Daniel; Ortiz Inmaculada; Maria Urtiaga Ane
来源:Desalination and Water Treatment, 2011, 27(1-3): 31-36.
DOI:10.5004/dwt.2011.2041

摘要

This work deals with the membrane separation of hydrogen and carbon dioxide. Permeation experiments of pure and binary mixtures of H-2 and CO2 were performed using the constant pressure technique and a planar membrane made of the commercial polyimide Matrimid 5218. For pure gases permeability values of 23.4 Barrer for hydrogen and of 5.2 Barrer for carbon dioxide were obtained leading to an ideal selectivity of 4.5 at 6 bar feed pressure. In the case of gas mixtures, H-2 permeability decreases with increasing contents of CO2, while the permeability of carbon dioxide in mixtures presents similar values to pure gas permeabilities. As a result, the H-2/CO2 selectivity obtained from mixed gas experiments decays to an average value of 3. The dual-sorption model with a partial permeant immobilization was used to predict each component permeation behavior for pure gases and binary mixtures. The carbon dioxide diffusion coefficients through the Matrimid polymer in the Henry and Langmuir mode were obtained, D-D,D-CO2 = 2.14 x 10(-8) cm(2)/s and D-H,D-CO2 = 2.79 x 10(-9) cm(2)/ s. The model and the estimated parameters provide a reasonable agreement between experimental data and predicted permeability values with correlation coefficient R-2 > 0.95 and mean squared relative error (MSRE) lower than 0.01.

  • 出版日期2011-3