摘要

A new mixed radiometric normalization (MRN) method is introduced in this paper which aims to eliminate the radiometric difference in image mosaicking. The radiometric normalization methods can be classified as the absolute and relative approaches in traditional solutions. Though the absolute methods could get the precise surface reflectance values of the images, rigorous conditions required for them are usually difficult to obtain, which makes the absolute methods impractical in many cases. The relative methods, which are simple and practicable, are more widely applied. However, the standard for designating the reference image needed for these methods is not unified. Moreover, the color error propagation and the two-body problems are common obstacles for the relative methods. The proposed MRN approach combines absolute and relative radiometric normalization methods, by which the advantages of both can be fully used and the limitations can be effectively avoided. First, suitable image after absolute radiometric calibration is selected as the reference image. Then, the invariant feature probability between the pixels of the target image and that of the reference image is obtained. Afterward, an adaptive local approach is adopted to obtain a suitable linear regression model for each block. Finally, a bilinear interpolation method is employed to obtain the radiometric calibration parameters for each pixel. Moreover, the CIELAB color space is adopted to evaluate the results quantitatively. Experimental results of ZY-3, GF-1, and GF-2 data indicate that the proposed method can eliminate the radiometric differences between images from the same or even different sensors.