摘要

Mitochondrial DNA (mtDNA) polymorphisms in the D-loop region and the intergenic COII/tRNA(Lys) 9-bp deletion were examined in 180 individuals from all nine aboriginal Taiwanese groups: Atayal, Saisiat, Bunun, Tsou, Rukai, Paiwan, Ami, Puyuma, and Yami. A comparison of 563-bp sequences showed that there were 61 different sequence types, of which 42 types were specific to respective aboriginal groups. D-loop sequence variation and phylogenetic analysis enabled the 180 aboriginal lineages to be classified into eight monophyletic clusters (designated C1-C8). Phylogeographic analysis revealed that two (C2 and C4) of the eight clusters were new characteristic clusters of aboriginal Taiwanese and accounted for 8.3% and 13.9% of the aboriginal lineages, respectively. From the estimated coalescent times for the two unique clusters, the mtDNA lineages leading to such clusters were infer-red to have been introduced into Taiwan approximately 11,000-26,000 years ago, suggesting ancient immigrations of the two mtDNA lineages. Genetic distances, based on net nucleotide diversities between populations, revealed three distinct clusters that were comprised of northern mountain (Atayal and Saisiat), southern mountain (Rukai and Paiwan), and middle mountain/east coast (Bunun, Tsou, Ami, Puyuma, and Yami) groups, respectively. Furthermore, phylogenetic analysis of 16 human populations (including six other Asian populations and one African population) confirmed that the three clusters for aboriginal Taiwanese had remained largely intact. Each of the clusters (north, south, and middle-east coast) was characterized by a high frequency of a particular lineage (C4, C2, and 9-bp deletion, respectively). This may result from random genetic drift among the aboriginal groups after a single introduction of all the mtDNA lineages into Taiwan, but another plausible explanation is that at least three genetically distinct ancestral populations have contributed to the maternal gene pool of aboriginal Taiwanese.

  • 出版日期2003-7