摘要

Catalytic combustion of hydrogen-air boundary layers involves the adsorption of hydrogen and oxygen into a platinum-coated surface, chemical reactions of the adsorbed species, and the desorption of the resulting products. Re-adsorption of some produced gases is also possible. This paper presents numerical computations of laminar momentum transfer, heat transfer, and chemical reactions in rectangular channel flows of hydrogenair mixtures. Chemical reactions are included in the gas phase as well as on the solid platinum surfaces. In the gas phase, eight species are involved in 26 elementary reactions. On the platinum hot surfaces, additional surface species are included, which are involved in 16 additional surface chemical reactions. The platinum surface temperature distribution is prespecified, while the properties of the reacting flow are computed. The results show very good agreement with the measured data. [DOI: 10.1115/1.4005202]

  • 出版日期2012-4