DOSIMETRY BASED ON EPR SPECTRAL ANALYSIS OF FINGERNAIL CLIPPINGS

作者:Wilcox Dean E*; He Xiaoming; Gui Jian; Ruuge Andres E; Li Hongbin; Williams Benjamin B; Swartz Harold M
来源:Health Physics, 2010, 98(2): 309-317.
DOI:10.1097/HP.0b013e3181b27502

摘要

Exposure of fingernails and toenails to ionizing radiation creates radicals that are stable over a relatively long period (days to weeks) and characterized by an isotropic EPR signal at g = 2.003 (so-called radiation-induced signal, RIS). This signal in readily obtained fingernail parings has the potential to be used in screening a population for exposure to radiation and determining individual dose to guide medical treatment. However, the mechanical harvesting of fingernail parings also creates radicals, and their EPR signals (so-called mechanically-induced signals, MIS) overlap the g similar to 2.0 region, interfering with efforts to quantify the RIS and, therefore, the radiation dose. Careful analysis of the time evolution and power-dependence of the EPR spectra of freshly cut fingernail parings has now resolved the MIS into three major components, including one that is described for the first time. It dominates the MIS soon after cutting, but decays within the first hour and consists of a unique doublet that can be resolved from the RIS. The MIS obtained within the first few minutes after cutting is consistent among fingernail samples and provides an opportunity to achieve the two important dosimetry objectives. First, perturbation of the initial MIS by the presence of RIS in fingernails that have received a threshold dose of radiation leads to spectral signatures that can be used for rapid screening. Second, decomposition of the EPR spectra from irradiated fingernails into MIS and RIS components can be used to isolate and thus quantify the RIS for determining individual exposure dose. Health Phys. 98(2):309-317; 2010

  • 出版日期2010-2