摘要

Pinocembrin (PB; 5,7-dihydroxyflavanone; C15H12O4) is a flavonoid found in propolis and exerts antioxidant, anti-inflammatory, and antimicrobial effects. Furthermore, PB has been studied as a neuroprotective agent. However, it remains to be understood whether and how PB would induce mitochondrial protection in mammalian cells. Therefore, we investigated here the mechanism involved in the protective effects elicited by PB in paraquat (PQ; 100 mu M)-treated SH-SY5Y neuroblastoma cells. PB (25 mu M) pretreatment (for 4 h) downregulated the levels of Bcl-2-associated X protein (Bax), blocked the release of cytochrome c to the cytosol, and inhibited the PQ-induced activation of caspase-9 and caspase-3. Besides, PB prevented mitochondrial dysfunction by suppressing the PQ-elicited inhibition of complexes I and V. Moreover, PB abrogated the loss of mitochondrial membrane potential (MMP) and the decline in ATP levels in the cells exposed to PQ. PB exerted antioxidant effects on mitochondria by decreasing the levels of redox impairment markers in mitochondrial membranes. Importantly, PB enhanced the levels of mitochondrial reduced glutathione (GSH). Upregulation of enzymes involved in the synthesis of GSH was seen in the cells exposed to PB. PB afforded mitochondrial protection by activating the extracellular signal-regulated kinase/nuclear factor erythroid 2-related factor 2 (Erk1/2-Nrf2) axis, since inhibition of Erk1/2 or silencing of Nrf2 abrogated these effects. Therefore, PB exerted mitochondrial and cellular protection by an Erk1/2-Nrf2-dependent mechanism.

  • 出版日期2017-10