摘要

Steady thermocapillary convection with deformable interface in a two-layer system is simulated by the second-order projection method combined with the level set method, in which the three-stage Runge-Kutta technique and second-order semi-implicit Crank-Nicholson technique are employed to temporally update the convective and diffusion terms, respectively. The level set approach is employed to implicitly capture the interface. The continuum surface force tension model is used to simulate the Marangoni effect. Simulations are conducted for both fixed angle and fixed points at the contact between the interface and the end walls. The numerical results show that, the interface bulges out near the hot wall and bulges in near the cold wall, due to the Marangoni effect. With Marangoni number increasing, the deformability of interface increases. The contact condition of interface with the end walls is important for the prediction of thermocapillary convection characteristics, and the contact points fixed condition is more close to real condition.