摘要

Human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors are widely applied in gene transfer and gene therapy because of their high transduction efficiency and stable expression. There are various quantification methods for the transduction efficiency (TE) calculation of lentiviral vectors, while most of them usually need serial dilutions and experimental materials costing. So it is required to develop a feasible quantification method for lentiviral vectors' TE calculation. Here, we deduced a math equation between the number of infectious viral particles (v) and the transduction efficiency (TE): v = a ln (1-TE) + b. An HIV-1 based lentiviral vector FG12 encoding the GFP reporter gene was used to evaluate practicability of this method. According to the math equation, TE50 of FG12 was verified in different number of HeLa cells. Our results documented that the math equation was adopted into the TE calculation. Comparing with routine TE50 determination method, this method needed fewer serial dilutions and was more feasible.