Design, synthesis and biological evaluation of 6-substituted pyrrolo[2,3-d]pyrimidines as dual inhibitors of TS and AICARFTase and as potential antitumor agents

作者:Liu, Yi; Li, Meng; Zhang, Hongying; Yuan, Jiangsong; Zhang, Congying; Zhang, Kai; Guo, Huicai; Zhao, Lijuan; Du, Yumin; Wang, Lei*; Ren, Leiming*
来源:European Journal of Medicinal Chemistry, 2016, 115: 245-256.
DOI:10.1016/j.ejmech.2016.03.032

摘要

A new series of 2-amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidines, with an isosteric replacement of the side chain amide moiety to a sulfur atom, were designed and synthesized as multitargeted antifolates as well as potential antitumor agents. Starting from previously synthesized 2-amino-4-oxo-pyrrolo[2,3-d]pyrimidin-6-yl-acetic acid, a reduction by lithium triethylborohydride and successive mesylation afforded the key mesylate. Nucleophilic substitution by mercaptoacetic or mercaptopropionic acid methyl esters, followed by hydrolysis and condensation with pyridinyl-methylamines provided the nonclassical compounds 1-6, whereas condensation with glutamic acid diethyl ester hydrochloride and saponification afforded the classical analogs 7-8. All target compounds exhibited inhibitory activities toward KB, SW620 and A549 tumor cell lines. The most potent compounds of this series, 7 and 8, are better inhibitors against A549 cells than methotrexate (MTX) and pemetrexed (PMX). Nucleoside protection assays establish compound 8 a dual inhibitor of thymidylate synthase (TS) and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase (AICARFTase) targeting both de novo thymidylate and purine nucleotide biosynthesis, which is further verified by the molecular modeling studies. Analogous to PMX, target compound 8 alternates the cell cycle of SW620 cells with S-phase accumulation and induces apoptosis, leading to cell death.