摘要

Objective: Neuropathies are a nerve disorders that caused by diabetes. Neuropathy affects over 50% of diabetic patients. High blood glucose and their toxic byproducts are the main causes for nerve dysfunction. In the present study, we examined the neroprotective effects of cerium oxide (CeO2) nanoparticles in diabetic rats. Method Rats divided into four groups: control group, diabetic group, the diabetic group treated with CeO2 nanoparticle at a dose of 65 mg/kg and diabetic group received CeO2 nanoparticle at a dose of 85 mg/kg. Diabetes was induced by single intraperitoneal injection of 65 mg/kg streptozotocin (STZ). 8 weeks after the induction of diabetes, body weight and pain sensitivity in all groups were measured. The blood sample was collected for biochemical analysis. The dorsal root ganglion (DRG) neurons were isolated for histopathological stain and morphometric parameters studies. Results: Reduction of body weight, total thiol molecules (TTM), total antioxidant power (TAP) and ADP/ATP ratio in diabetic rat was reversed by CeO2 nanoparticles administration. We showed that lipid peroxidation (LPO) and nociception latency were significantly increased in STZ-treated rats and decreased after CeO2 nanoparticles administration. DRG neurons showed obvious vacuole and various changes in diameter, area and the count of A and B cells in STZ-diabetic rat. CeO2 nanoparticles improved the histopathology and morphological abnormalities of DRG neurons. Conclusion: Our study concluded the CeO2 nanoparticles have a protective effect against the development of DN.

  • 出版日期2017-5