摘要

Failure after glaucoma filtration surgery is attributed to fibrosis at the operated site. To understand the wound healing process after glaucoma filtration surgery, we have developed a mouse model for glaucoma filtration surgery which closely mimics the clinical response. In this study, we describe a systematic analysis of the wound healing response in vivo. Our data revealed that the post-surgical tissue response was separable into two distinguishable phases. The early %26quot;acute inflammatory%26quot; phase was characterized by significantly increased transcript expression of Vegfa, Cxcl1, Cxcl5, Ccl2, Ccl3, Ccl4, Gmcsf and specific Mmps as well as greater infiltration of monocytes/macrophages and T cells. The late %26quot;fibrotic%26quot; phase was characterized by an increased expression of Tgfb2 and extracellular matrix genes as well as a notable reduction of infiltrating inflammatory cells. Significantly, more mitotic cells were observed at both time points post-surgery. Subconjunctival fibroblasts may be involved in both phases since they have the capacity to reiterate the in vivo gene expression profiles upon either pro-inflammatory or pro-fibrotic cytokine stimulation. Given that the cellular and molecular targets that govern the early and late phases of wound healing are distinct and time sensitive, a multi-targeted therapeutic approach to sequentially inhibit inflammation and fibrogenesis at the critical time point may lead to improved surgical outcomes in glaucoma filtration surgery.

  • 出版日期2013-7