Aminoalkoxysilane Reactivity in Surface Amine Gradients Prepared by Controlled-Rate Infusion

作者:Kannan Balamurali; Higgins Daniel A*; Collinson Maryanne M
来源:Langmuir, 2012, 28(46): 16091-16098.
DOI:10.1021/la303580c

摘要

The reactivity of a series of substituted aminoalkoxysilanes for surface amine gradient formation has been studied using a newly developed time-based exposure method termed controlled-rate infusion (CRI). The aminoalkoxysilanes used include those that contain primary, secondary, and tertiary monoamines as well as more than one amine group (diamine and triamine). X-ray photoelectron spectroscopy (XPS) was used to confirm the presence of a gradient in each case and to acquire detailed information on gradient composition from which kinetic data were obtained. The total area under the N 1s XPS spectra allows for the extent of amine modification to be quantitatively assessed along each gradient. The N 1s peaks actually appear as doublets, providing additional data on the level of protonation and, hence, amine basicity on the dry surface. The degree of protonation showed an interesting trend toward smaller values running from top to bottom along gradients incorporating the most basic amines. The gradient profiles, including initial steepness and extent of saturation, were shown to be highly dependent on the aminoalkoxysilane precursor employed. The highest levels of modification were achieved for the diamine and primary monoamine precursors while the more hindered amines produced lower levels of surface modification and took longer for saturation to be achieved. By fitting the gradient data to a simple first-order kinetic model, rate constants for the condensation reaction between each aminosilane and accessible surface silanol groups were obtained. The rate constants follow the trend: triamine similar to diamine %26gt; monoamine and primary %26gt; secondary %26gt; tertiary, indicating kinetic factors also play an important role in controlling surface modification. The presence of more than one amine group on the silane is concluded to enhance the rate of condensation to the surface silanol groups, while the more hindered secondary and tertiary amines slow condensation. Collectively, the results provide valuable new data on how the number of amine groups, degree of substitution, and steric hindrance influence silane reactivity with silica surfaces, amine surface coverage, and basicity along the gradient profile.

  • 出版日期2012-11-20