摘要

This study highlights the effect of membrane action in improving load carrying capacity of Profiled Steel Sheeting Dry Board (PSSDB) floor system. PSSDB system is a lightweight composite structural system composed of profiled steel sheeting and dry board, attached together by self-drilling and self-tapping screws. Many literatures have reported that restricting conventional slabs, such as reinforced concrete slab, at the supports against translation and/or rotation while it is subjected to vertical loading develops the compressive membrane action in the slab. The development of this phenomenon is considered in the PSSDB system with concrete infill for continuous and practical spans, with and without topping concrete. Previous authors' experimentally verified non-linear finite element model for the PSSDB floor without topping was extended to parametrically predict the effect of different boundary conditions on the performance of the system for practical applications. It was revealed that preventing the in-plane movement of the slab ends improves the flexural rigidities of the slab up to more than three times when considering central deflection of serviceability limit state. This was observed when the deflection limit load of the fixed both end supports model was compared to the pin-roller support model. Moreover, the topping concrete enhances the applicability of the system in longer span and the developed compressive membrane action dramatically boosts the load carrying capacity of the slab with restricted translation and/or rotation of the slab ends.

  • 出版日期2014-6

全文