摘要

This paper focuses on the average consensus of double-integrator networked systems based on the asynchronous periodic edge-event triggered control. The asynchronous property lies in the edge event-detecting procedure. For different edges, their event detections are performed at different times and the corresponding events occur independently of each other. When an event is activated, the two adjacent agents connected by the corresponding link sample their relative state information and update their controllers. The application of incidence matrix facilitates the transformation of control objects from the agent-based to the edge-based. Practically, due to the constraints of network bandwidth and communication distance, agents usually cannot receive the instantaneous information of some others, which has an impact on the system performance. Hence, it is necessary to investigate the presence of communication time delays. For double-integrator multiagent systems with and without communication time delays, the average state consensus can be asynchronously achieved by designing appropriate parameters under the proposed event-detecting rules. The presented results specify the relationship among the maximum allowable time delays, interaction topologies, and event-detecting periods. Furthermore, the proposed protocols have the advantages of reduced communication costs and controller-updating costs. Simulation examples are given to illustrate the proposed theoretical results.