摘要

Precision agriculture (PA) utilizes tools and technologies to identify in-field soil and crop variability for improving farming practices and optimizing agronomic inputs. Traditionally, optical remote sensing (RS) that utilizes visible light and infrared regions of the electromagnetic spectrum has been used as an integral part of PA for crop and soil monitoring. Optical RS, however, is slow in differentiating stress levels in crops until visual symptoms become noticeable. Surface temperature is considered to be a rapid response variable that can indicate crop stresses prior to their visual symptoms. By measuring estimates of surface temperature, thermal RS has been found to be a promising tool for PA. Compared to optical RS, applications of thermal RS for PA have been limited. Until recently (i.e., before the advancement of low cost RS platforms such as unmanned aerial systems (UAVs)), the availability of high resolution thermal images was limited due to high acquisition costs. Given recent developments in UAVs, thermal images with high spatial and temporal resolutions have become available at a low cost, which has increased opportunities to understand in-field variability of crop and soil conditions useful for various agronomic decision-making. Before thermal RS is adopted as a routine tool for crop and environmental monitoring, there is a need to understand its current and potential applications as well as issues and concerns. This review focuses on current and potential applications of thermal RS in PA as well as some concerns relating to its application. The application areas of thermal RS in agriculture discussed here include irrigation scheduling, drought monitoring, crop disease detection, and mapping of soil properties, residues and tillage, field tiles, and crop maturity and yield. Some of the issues related to its application include spatial and temporal resolution, atmospheric conditions, and crop growth stages.

  • 出版日期2017-6-15