Aerosol-cloud-land surface interactions within tropical sea breeze convection

作者:Grant Leah D*; van den Heever Susan C
来源:JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119(13): 2014JD021912.
DOI:10.1002/2014JD021912

摘要

In this study, the influence of aerosols, surface roughness length, soil moisture, and synergistic interactions among these factors on tropical convective rainfall focused along a sea breeze front are explored within idealized cloud-resolving modeling simulations using the Regional Atmospheric Modeling System (RAMS). The idealized RAMS domain setup is representative of the coastal Cameroon rainforest in equatorial Africa. In order to assess the potential sensitivity of sea breeze convection to increasing anthropogenic activity and deforestation occurring in such regions, 27 total simulations are performed in which combinations of enhanced aerosol concentrations, reduced surface roughness length, and reduced soil moisture are included. Both enhanced aerosols and reduced soil moisture are found to individually reduce the precipitation due to reductions in downwelling shortwave radiation and surface latent heat fluxes, respectively, while perturbations to the roughness length do not have a large impact on the precipitation. The largest soil moisture perturbations dominate the precipitation changes due to reduced low-level moisture available to the convection, but if the soil moisture perturbation is more moderate, synergistic interactions between soil moisture and aerosols enhance the sea breeze precipitation. This is found to result from evening convection that forms ahead of the sea breeze only when both effects are present. Interactions between the resulting gust fronts and the sea breeze front locally enhance convergence and therefore the rainfall. The results of this study underscore the importance of considering the aerosol-cloud-land surface system responses to perturbations in aerosol loading and land surface characteristics.

  • 出版日期2014-7-16