摘要

Recently, as an emerging persistent dissolved organic pollutant (DOP), gallic acid (GA) and its efficient decomposition methods have received global attention. The present work aimed to compare the effect of Aspergillus oryzae 5992 and Phanerochaete chrysosporium 40719 on degradation of different concentrations of GA. The A. oryzae grew well and achieved a GA removal rate up to 99% in media containing 1-4% GA, much higher than P. chrysosporium. The activity of laccase and lignin peroxidase excreted by A. oryzae was higher than that by P. chrysosporium in the presence of GA. Based on the results of high-performance liquid chromatography-electrospray ionization-mass spectrometry, three relevant intermediate metabolites were determined as progallin A, methyl gallate, and pyrogallic acid, implying that A. oryzae could not degrade GA unless the carboxyl in the molecule was protected or removed. In view of the ability of A. oryzae to accommodate a high concentration of GA and achieve a high removal rate, as well as the significantly different enzyme activities involved in GA degradation and the underlying mechanisms between the two fungal strains, A. oryzae is proven to be a superior strain for the degradation of DOP.