摘要

Nondestructive entangled-state analyzers could save the physical entanglement resource and boost the efficiency of quantum information processing (QIP). However, up to now, there is no much progress in the nondestructive analysis of Greenberger-Horne-Zeilinger (GHZ) states. In this paper, a nondestructive photonic polarization GHZ-state analyzer, based on the interaction between circularly polarized light and quantum-dot cavity systems, is proposed. We can distinguish the GHZ states deterministically in theory, and the states are not destroyed because no single-photon detectors are required. Our scheme can be extended to n-photon GHZ states analysis directly and can be used to achieve QIP with less resource.